7,247 research outputs found

    Production rates for hadrons, pentaquarks Θ+\Theta ^+ and Θ∗++\Theta ^{*++}, and di-baryon (ΩΩ)0+(\Omega\Omega)_{0^{+}} in relativistic heavy ion collisions by a quark combination model

    Full text link
    The hadron production in relativistic heavy ion collisions is well described by the quark combination model. The mixed ratios for various hadrons and the transverse momentum spectra for long-life hadrons are predicted and agree with recent RHIC data. The production rates for the pentaquarks Θ+\Theta ^+, Θ∗++\Theta ^{*++} and the di-baryon (ΩΩ)0+(\Omega\Omega)_{0^{+}} are estimated, neglecting the effect from the transition amplitude for constituent quarks to form an exotic state.Comment: The difference between our model and other combination models is clarified. The scaled transverse momentum spectra for pions, kaons and protoms at both 130 AGeV and 200 AGeV are given, replacing the previous results in transverse momentum spectr

    The instability of diffusive convection and its implication for the thermohaline staircases in the deep Arctic Ocean

    Get PDF
    In the present study, the classical description of diffusive convection is updated to interpret the instability of diffusive interfaces and the dynamical evolution of the bottom layer in the deep Arctic Ocean. In the new consideration of convective instability, both the background salinity stratification and rotation are involved. The critical Rayleigh number of diffusive convection is found to vary from 10<sup>3</sup> to 10<sup>11</sup> in the deep Arctic Ocean as well as in other oceans and lakes. In such a wide range of conditions, the interface-induced thermal Rayleigh number is shown to be consistent with the critical Rayleigh number of diffusive convection. In most regions, background salinity stratification is found to be the main hindrance to the occurrence of convecting layers. With the new parameterization, it is predicted that the maximum thickness of the bottom layer is 1051 m in the deep Arctic Ocean, which is close to the observed value of 929 m. The evolution time of the bottom layer is predicted to be ~ 100 yr, which is on the same order as that based on <sup>14</sup>C isolation age estimation

    Deformation monitoring of high-latitude permafrost region of northeastern China with time series inSAR technique

    Get PDF
    Abstract. Permafrost distributed in northeast China is the only high-altitude permafrost in China. The deformation monitoring over this permafrost region is of great importance to local climate change and ecological environments. This study focuses on the deformation monitoring of high-latitude permafrost in northeast China with time series InSAR technique. The spatial distribution characteristics, the annual deformation rates and the temporal deformation evolutions of permafrost could be retrieved from multi-temporal InSAR processing with Sentinel-1 TOPS datasets. This work concludes that time series InSAR technique could help to retrieve a comprehensive and reliable permafrost deformation, while a long time-series of displacements facilitated to better understand permafrost kinematics.</p

    Mass movement susceptibility mapping using satellite optical imagery compared with InSAR monitoring: Zigui County, Three Gorges region, China

    Get PDF
    Mass movements on steep slopes are a major hazard to communities and infrastructure in the Three Gorges region, China. Developing susceptibility maps of mass movements is therefore very important in both current and future land use planning. This study employed satellite optical imagery and an ASTER GDEM (15 m) to derive various parameters (namely geology; slope gradient; proximity to drainage networks and proximity to lineaments) in order to create a GIS-based map of mass movement susceptibility. This map was then evaluated using highly accurate deformation signals processed using the Persistent Scatterer (PS) InSAR technique. Areas of high susceptibility correspond well to points of high subsidence, which provides a strong support of our susceptibility map
    • …
    corecore